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UNBOUNDED SPEED VARIABILITY IN DISTRIBUTED
-4.

COMMUNICATION SYSTEMS

by
John Reif and Paul Spirakis
Aiken Computation Laboratory
Division of Applied Sciences

Harvard University, Cambridge, Massachusetts 02138

1.1 Abstract

This paper concerns the fundamental problem of synchronizing communication
between distributed processes whose speeds (steps per real time unit) vary
dynamically. Communication must be established in matching pairs, which are
mutually willing to communicate. We show how to implement a distributed local
scheduler to find these pairs. The onlZ rnans of synchronization are boolean
"flag" variables, each cf which can be written by only one process and read by
at most one other process. (Shared variables are very difficult to implement
in tha case the processes are running in different processors in a communication
network.) No global bounds in the speeds of processes are assumed. Processes
with speed zero are considered dead. However, when their speed is nonzero then
they execute their programs correctly. Dead processes do not harm our algorithms'
performance with respe'ct to pairs of other running processes. When the rate of
change of the ratio cf speeds of neighbour processes (*'.e. relative acceleration)
is bounded, then any two of these processes will establish communication within
a constant number of steps of the slowest process with high likelihood. So, our
implemnt-tatiun has the property of achieving relative real time response. We
can use our techniques to solve other problems such as resource allocation and
implementation of parallel languages such as CSP and Ada. Note t!hat we do
not have any probability assumptions about the system behavior, although our
algorithms use the technique of probabilistic choice.

1.,2 Introduction

Recently, [Reif, Spirakis, 19811 showed how to achieve real-time response
usinq probaDllistic synchronization techniques, with the am.sumption that the
speeds of all processes were bounJed between fixed norizero bounds. This lead
to (se-E' app-endices 1 and II of tteit, Spirakis, 19811) real time resource
allocation alqorithws ýind real time .implem:nutation of message passing in CSP.

In this pajer we assume no (7.o1-' bonuda on, the proceosors' speed8. They
can vary dynamically frorr. zero to an upper bound which may be different for
each pi.ocessor, and not known by :he other processors. We allow a possibly

Sinfinite number of processes, so that there may not be a global uipper bound on
the speeds. Processes may die (have zero speed) but when they have nonzero
speed then we assirne they execute their programs c.orrectly. We are interested
In di•fp-t interprocess coirirunication (rether than packet switching) which is of
the fo•r of handrhak, (rather than buffered), as in Hoani's CSP. [Hoare, 19781.
The ess, i4tial technique that we utilize is that of probabiliati.:.- ahoj•o. This
techniquu, introduced to slnchronization problems by [Rabin, 19R0], [Lehmann and
Rabin, 1981J and [Francez, Rodeh, 1980], was also utilized in our previous work.

# ::....
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The use of probabilistic choice in the algorithms leads to considerable
improvements in the space and time efficiency [Rabin, 1980], roif, Spirakis,
19811; we feel that this may be because complex sequences of processes' steps
prohibiting communication have vary low probability of occurrence. We also
introduce new adaptive techniques: The processes estimate the speeds of
neighbour processes and select them to communicate with probabilities depending
on the speeds, penalizing the slowest processes. These adaptive techniques
do not seem to have ever been utilized in the previous synchronization literature.

1.3 Relative real t.me response

If processes are bounded in speed then it is natural to aefine real time
response to be a response to a communication request that uses no more than
constant number of units of real time. This measure is inapplicable in our case
in which there is no global upper bound and no nonzero lower bound on speeds.
Thus we introduce the notion of re.ativie real time respon•e which is establish-
ment of communication between any pa.r of neighbouring processes within constant
number of local rounds (A local round of neighbour processes, i,J is the minimum
time interval which contains at least one step of each process and exactly one
stop of the slowe' of i,j). We achieve this by our probabilistic algorithms
with some probability of error which can be made arbitrarily low. We conjecture
that it is not possible to achieve relative real time response without use of
randomization. The best deterministic symmetric algorithms which attempt to
form matchings in distributed systems have a relative response depending linearly
on the network's diameter. (Also, (ArJomandi, Fischer, Lynch, 1981] have actually
shown that some synchronization problems which are global (in contrast to our
problem) cannot be done in real time and require time proportional to the
logarithm of the total number of processors in the network. A t•pical situation
where this could occur is the problem of detecting connected components of
processes whose speeds are within givc.n bounds e.g., with nonzero values.)

2. The model VSDCS (Variable Speed Distributed Communication System).

We develop here a theoretical model related to. but more general than, the
DCS (Distributed Communication System) of [Reif, Spirakis, 1981]. We will
atte.npt to describe our model in words and avoid mathematical notation in this
abstracted draft. A detailed description of the fundamental issues can be found
in [Reif, Spirakis, 1981].

We assume a possibly infinite collection of processes n = {l,2,..
Events of the system are totally ordered on the real-time line (0,-).
Each nrocess consists of a fixed set of synchronous parallel subprocesses
(i.e. with same speeds) where we distinquip&i the dtreu&-or subprrcess. The
director wishes at various times to communicate with directors of other
processes but has no means of communication except via the communications system.
ThiF is implemented by many po&Zer subprocesses (three for ea'ch target process)
which are synchronous with themselves and the director. We assume a fixed
connections graph H which is undirected and has the set Tr as its vertex set.
An edge {i,jl indicates that process i is physicdlly able to communicate
with orocess j (but not necessarily willing to). H is assumed to have finite
valence. We also assume for each time t the wil•ingness digraph Gt which

- .. *.
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indicates the willingness of a given process 3. to com~micate with a given
neighbour j at a given time t. (We indicate it by the edge ± --- and

A say i is a ?diZlinig neighbour' of J.).

Note that i -. t--I. 'only if {i,j)E H

The edges of this graph are stored distributedly so that the edges departing
from a given process are only known to that process. We assume that the outdegree
of each vertex of G is upper bounded by a fixed constant v. For each t > 0,
the (possibly infinite) cligraph M t with vertices it and directed edges
i --Ak4AA...j denotes which processes open conmmuication to other processes at

time t. We denote i-I4-- if both i...AM..e..j and j~~V.i.Thus
t t t

i .~A"-.jdenotes i,j a2chieve mutueaZ co~mmunication at time t. Mtis t.1t
digraph that implementations of distributed synchronization achieve. We wish
implementations to be proper in the sense that

(a) i--A-w only if i ---- bj (neighbours try to speak only if
t

they are mutually willing to)

(b) t must be a partial matching.

If i P- then not j 1 -.-AM.,.i for
t t

any j' E 7F - (j1. (Nobody is allowed to speak with two or more

neighbours at the same time.).

Again, we assume that processes can suddenly die (i.e. have zero speeds)
but when they are awake they execute their programs correctly. We furthermore
assume that each process has an. upper bound on its speed which may be different
from the other processes and not known to them.

We define the reZative acceteration bound a~ of processes i and j to
be the worst case absolute rate of change of the ratio of steps of the two
processes per step of any of the two processes. The correctness of our
synchronization algorithms does not depend on whether processes are acceleration
bounded, however we assume fixed acceleration bound 0, in our time complexity"
analysis. (i.e. the relative acceleration of one neighbour with respect to,
another is bounded by a constant bound a~ or can be -~if the process dies).

2.2 Communication commands for the VS-DCS

The followinq communwiication primitives can be implemented by the poller
subsystem and executed- by the directors of each process: (The director may not
get ain immied~aite answer but may proceed to some other instruction and later a
time slot for communication will be arrangel by the poller).

ATTEMPT-CON (p ) indicates that the director of i wisi:es to communicate

with the director of process J.

CANCEL-COM.(p.) :indicates that the director of i wishes no longer to

communicate with pj
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The precise semantics of ATTEMPT-COM end CANCEL-COM are given by the

relation -nx------- ! x 7 (the willingness digraph, defined in section 2.1).t

2.3 Complexity of VS-DCS

Wt assume a worst-case oracle "1 which at time 0 chooses the speeds of

all the processes for all times. .d is also able to dynamically change the

willingness relation .... (i.e. dynamically choose one of ATTEMPT-COM,t
CANCEL-COM for the directors to execute) so as to achieve the worst case

performance of the implementation of VS-DCS

We say A! ie tame for' i, j on time interval A if the pairs

f(i,j)} U {(i,k) I k Is a neighbour of i} U {(j,k) I k is a neighbour of }.

are each relative accelaration bounded by % on the time interval A.

(We assume here a global constant a).

For every e on (0,1) let the E-eror r•eponae Sic) be an integer > 0

such that for every pair of neighbours i,j and each ti; interval A and for

every oracle o which is tame for i,j on A, if is- m--j and the

number of steps of the slowest of ij within A is > S(E) then there exists

a subinterval A' a A such that i--'�--, m j with probability > 1- E.

Intuitively 1-E gives a lower bound in the probability of establishing

communication in the case process i issues an ATTEMPT-COM (ps) at the

beginning of A, and after S(c) steps it calls CANCEL-COM (p.). (Note thatJt
we presume here that i and j and their neighbours have relative

acceleration bound a during the interval A; at other times this acceleration
bound may be violated, and furthermore the acceleration bound C' need not hold

for other processes even during the interval A).

We consider an implementation of V3-DCS to be reiZtive Yral time if for

all constants £ on (0,1), the relative C-error response S(-c) is independent

of any global measure of the willingness digraph G (such as inl or any
t jr

function of it) and independent of any local measure of Gt except the

ttconstant maximum valence v of the vertices of G t. (StO) may de~p,-nd on

the bound 'u on the relative acceleration). Note that relative real tie

response doe8 not imply that communication is guaranteed within any time

interval b'.it instead it is guaranteed within a bounded number of steps of the
processes with high likelihood (this is because processes can slow down

arbitrarily). In this paper we show how to i'mplement the VS-DCS so that relative

real tine response is achieved.

i
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3. Applications of VS-DCS

The primitives ATTEMPT-COM, CA1CEL-COM of VSDCS are powerful enough
to supply real time implementations of synchronization constructs of high-level
parallel languages like CSP and Ada.

3.1 Real time resource granting systems with process failures

Previously, in [Reif, Spirakis,1981] we utilized the more restricted DCS
system (which does not allow process failures) to implement a real time resource
granting system. In this paper, we can cope with sudden process failures (zero
speeds). In this case, the process governing a resource will attempt to communi-
cate for cS 2 (e)./2 of its steps with a process granted the resource. If
that process does not respond, the resource governing process may reclaim the
resource. If a resource allocator dies, then other processes can play Lts role.

3.2 Relative real time implementation of CSP and Ada's synchronization constructs.

In a typical stage during execution, the processes comprising a CSP program
may be divided into two classes: those busy with local computations and those
waiting for a partner to communicate with. A distributed guard scheduler can be
implemented by using the poller subprocesses of the relative real time VS-DCS
system.

Also, in Ada, two-way communication between pairs of tasks is allowed in
synchronized time instances called rendezvous. An accept statement of the form
accept f(-) appearing in task T1 indicates that T1 is willing to rendezvous
at f with any task of similar argument type. The task 1 2 may execute a caZ

statement of the form f(-) indicating that T2  is willing to rendezavcu with

T at the accept statement containing f. Ada also allows for se~ective
ce statements containing multiple accept statements, one of which must be

nondeterministically chosen to execute. (This is similar to the seZect
statement of CSP).

Ada's tasks may be implemented by processes whose speeds vary dynamically.
ZProcesses may even fail for various time intervals.) The key implementation
problem is to synchronize task rendezvous within relative real time, in spite of
the dynamic speed variations. These processes mdy be connected within a
distributed network whose transmission channels may also have variable speeds or
fail. Unreliable transmission channels can be viewed as processes which are
connected with the processes of the network via reliable communication channals.

We assume that it is possible to analyze (perhaps by data flow analysis)
an Ada program to determine an indirected (possibly infinite) connections graph
whose nodes are all the tasks possibly created by the Ada program and edges are

F
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the possible task communication pairs. Since an actual implementation will
have in its hands at any time only a finite set of processes we assume that
only the currently activo tasks have an associated implementing process and
that a ca' l to Ada's initiate statement devotes a currently free process to
a given newly created task. An abort statement gazrage collects the implementing
process from the deleted task and places it back to the free list of processes.
These implementation techniquesa were developed by [Denis and Misunas, 1974] for
real time implementation of data flow machines.

The synchronization facilities of the VS-DCS system provide a real-time
implementation of the accept and catZ statements. A version of th- aotitve
statement can be implemented so that deleted tasks can be detected by their
neighbours in zeal time with some (arbitrarily small) error probability. Finally,
the s,•msetrn! and locality of the VS-DCS implementation (due to its probabilistic
nature) may help in eliminating the tradeoff between generality of expression
and ease of implementation in Ada.

The probabi•8•tic fas'rnes8 guaranteed by the algorithms of the pollers
eliminates the danger of bottlenecks which could be created if conventional
techniques were used (a rew task which centralizes requests and keeps track of
busy server tasks is one of the conventional proposed solutions). Most of the
problems which VS-DCS could cure are discussed in [Mahjoub, 1981], [(Francez,
Rodeh, 1980]. A probabilistic solution to some of the discussed problems was
given also in [Francez,Rodeh, 1980] but no discussion about real-time properties
was done and neither the piroblem of speed variations and dying processes was
addressed.

4. Relative Real Time rmplementation of VS-DCS

4.1 Intuitive description of the algorithm.

We utilize 3v + 1 synchronized parallel processes to implement the poller
subprocess for each process i. These are the corm•dncatoreii i
P 2 '' 2v' the speed etimtor e .. , e and the judge subprocess of

process i. Each pair of the communicators pk' P," (with k'mod v = k mod v k)

is devoted to communication with a specific neighbour (the h neighbour). Each
estimator is used to continuously update an estimation of the speed of a
particular neighbour process. The judge has the task to select under certain

conditions one communicator and to give to him the right to open the communica-
tions channel of node i to its corresponding neighbour. We frequently use the
technique of hancu,&a'e by which we mean that each subprocess modifies a flag
variable observed by the corresponding neighbour subprocess. Process contention
between synchronized prc.. esses is easy to implement (we can allow each to take a
separate step in a small round).

thi
Our algorithm for the k commumicator subprocess pk (U < k < 2v) of the

Spoller of process i proceeds as followst

.I40
j
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Let k'* -k modv. At every time t >, El),..., 0i(Di) is the list

vf targets of edges of Gt departinq from i E W, and Di is the current number

of the targets (Di I v). Those vaziable3 are dynamically set by the oracle Id

and they are the neighbours to which process i is willing to open communica-
ition at time t. The subprocess pk deals with the E (k')' neighbour. If

k < v, then is an aske, subprocess, else it is a responder process. must
first handshake with the corresponding subprocess of process E (W') to which

node i wishes to communicate. We need two handshake subprocesses (ask, respond
respectivaly) per neighbour because of a certain asymnetry in the handshake (some

has first to modify a flag). In particular the asker procedure initiates the

handshake and the resprnder answers to it.

Next we wish to find a time slot in which the two neighbours may communicate.

Because there may be contention among other processes j which also wish to

communicate with i (and consequently, other Askers or responders of node i

also will handshake) we must resolve the contention by a fair judge. To do
this, we add the process Pk to a queue and an additional synchronous

subprocess of poller i, the judge takes a random process from this queue and

allocates time slots for communication att'empts. To ensure that slower

neighbours do not utilize any more total time on the average than faster

neighbours during communication attempts, we weigh the probabilities of sub-
processes to be chosen from the queue by the factor

fI/A.k

Sij

where A (m 1,..., v) is the current estimation of the steps of process iimi
per step of process m, supplied by the estimator em.

This has the effect that each ,ubprocess in the queue attempts to communicate

on the average 1/2v of the total time. (See the analysis for a proof of that).

If a process is chosen by the judge but the communication is not established, the

algorithm requires that subprocess to initiate another handshake with its partner

(to check if they are still mutually willing to communicate and to synchronize

steps). Then, it is again added to the queue to be given another charce to
establish communication. This process proceeds until either the director of i

withdraws its willingness to communicate with Ei(k') or until it establishes

4
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.oowiunication. Note that the slote allocatod by the judge to each solected
communicator, take into account the current speed ratio of the node i and its
neighbour uorresponding to that communicator, adjusted by a factor related to
worst-case acceleration, to give the opportunity of at least one step ovprlap in
time of process i and its neighbour, if their corresponding channels are both open.

We introduce random waits which help subprocess Pk to eliminate the A

possibility of schedules set-up by the oracle o to have always a particular
subprocess arrive first in the queue and win the contest. This possibility is
eliminated since the oracle sets the speeds at time 0 and cannot affect the
random choices done by the processes.

Also, our algorithms assume each process has a perfect random bit
generator, independent of the random bits generated by other processes.

Note that we trade computation effort (parallelism) in a node to achieve V
reliable communication. This paralleli.m is limited because of the bounded
valence v of the graph Gt. we can always simulate these synchronous
parallel subprocesses in a node i by a single processor, using round robin
techniques. This will reduce the effective speed of each subprocess by only
a factor of 3v + 1.

4.2 The programs of the pollers

For each poller i c 7 , we assume

Synchronous svbprocesses
i i iPi. P2...., pv (askers)

i
+l'**' Pv (responders)
el i (estimators)

and the judgei

Each of the communicators Pk executes the following program
iprocess l s A

Pklocals •ik

WHILE true DO

LO: IP D. > k THEN

BEGIN

Ll: Choose W at random from [O,4(2v+Il)(2a+l)]

do W noops

¶ if k < v then ASK(Ei(k)) else RESPOND(E(k))

add k to Q

WHILE marriage (k)MO DO noop
SikM.. x --- EST•3LISH-COM (X (k) ,4(2 Ot + 1) A .

marriage. (k)-•,- 0 0
1

IF x THEN GO TO L, ELSE GO TO LO
END

__ U.- d F
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The speed estimator e:

process e~

DO FORE VER

set F i tol1.

wait until Fi is set

A: zro ikA S 4- CURSTEP

wait until Fk is zeroed

Aik *CURLSTEP-s

OD

Notc' that Fik is a flag set by i, read by k.

The special register CURSTEP gives the current step of process i. We
i

assume that a step co-asists of an elementary statement of the progra. je Is

execution assures that A. is (within a factor of 2) tl~ actual speed ratio
ik

of processes i and k, since from step A to step B the fastest of the

partners does CUPSTEP-s steps and the slowest does 2 steps

process judge1

WHILE truie DO

IF Q~0 THEN

BEGIN

choose and delete a random element k of the queue

Q wth probability 1 /A ik
E i/A.j 1j

marriage.(k)+-I

WHILE marriage (k) =1 Do noop
END.

ENND

OD

Note: The assignitient of the marriage1 variable by the judge allows pk to

attempt a co-mnunu~ication witl, the corresponding subprocess of -che nieigh~bour

- Se
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The following are the low level synchronizati~on proceduree used by the
poller programs:

procedure aski (target)
BEGIN

~i,target 1
WHILE_ At -g 0 DO noop

Q 4-O0
i ,target

WHILE A =1 DO noop
- target,i

END

Note: The set of the flag ~itrtmeans that i asks the target. If
the targt detecs Q. =

thetagetdeect Qi,target then it answers positively by setting

A = 1. -Both partners reset these flags to 0 at the end of procedures ask
target,

and respond-

procedure respond.i (asker)

BEGIN

LOOP UNTIL asker =1

BEGIN

WHILE Dokri=1 2 noop
Aj ,asker .- 0;

END

END

-9 We finally present the code for the procedure ESTABLISH-CON.i (target,k). During

its execution node i opens its channel to node target. A simple protocol

W, (symmetric handshake) is then attempted to see if the neighlY'our responded to

that communication: attempt. If the protocol succeeds then node i is sure that

node target also opened its channel and cozmmunication took place. Else, node i

knows that the attempt failed.

procdure ESTABLISH-COW (target, Z)

BEGIN

open channeli~agt COMitrt

k ~So *.- CURSTEP

b+ I

WHILE (COMtrti =0) or (b 1) Do

BEGIN

IF CLIPSTEP-So > Z. 11,M41 b ~-0

END

OD

-7 7 1 A7



IF (COM rget i t) AND (b THEN suucess--l

ELSE Success -- O0

b~ p-0 COM.i, target

close channel
i,target

return (success)

END

Note: COM.itarget is a flag of node i and COMtarget, i is a flag of node C

target. open channeli,target corresponds to the appearance of i target

at the time of its execution. Also, Z is the maximum number of steps we are
allowed to keep channel open before we fail.

5. Correctness properties of our proposed implementation and time analysis. V

Lemma 5.1 A matching (with respect to the relation . is guaranteed
t

by the implementation.

Proof

In any time instant, only one of the subprocesses of any poller can have

the marriage variable set and its channel open. So, the relation At
is one-one which means that -*--.. can not be more than a matching.

t
Lemma 5.2 Death of a process does not affect the communication of other

processes.

Ploof

Death of process "target" at any time will only cause blocking of only one

subprocess (pa ) per neighbour i of target. This does not disrupt the
target

other subprocesses of the neighbours.

Lemma 5.3 Suppose that i,j start to be mutually willing to communicate at

time t and continue to be willing for 5 local rounds. Then all

four subprocesses pj pj and p. , p. (with j modv = j 2 modv j
1v 2 i 2 1 2

and i modV i modv i) will arrive in the queues of i and j
in a constant number (5) local rounds.

Proof

Note that at each time the slower of i,j will do only one step in the

busy waits of procedures ask or respond. The result follows simply by counting

the steps to be executed in each of the procedures. 0 2

Let A,. be the current estimation (within a factor of two) of the ratio

of steps of i per step of j (estimated by i).

"W Mi ,1111 1 !4 •
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Definition 5.3 Let h =

~lik

"i Definition 5.4 Let Pij be the ratio l/(%Aij)

4In the following we asstume that the oracle . is tame with respect to

processes i,j in the time interval they attempt communication.

Definition 5.3 Let Sj be the average number of steps that p does
ijj

before it is selected to attempt communication, measured from the time it enters

the queue.

Lemma 5.4 S. 8v(2a+l).A where Ai is the most current estimation .1)-i ii ýl

Proof

Note that the probability to be chosen follows a geometric density
(1 -p i P where h - the number of selections done before 1 is selected.

Each time p. is not chosen, it waits in the queue for an average time bounded

above by 2v
I c'A P

k=l ik ik

where c 4(2cý+l).

So en 2v
S < 1 prob hunfortunate i). h 0 cAikPik

- h.=l 'selections for pj k=l

2v 2v
< c-A, P.=hA = 2vcL.

PI- j k=l ikik j k=l h h

Theorem 5.1 Each subprocess expects to get the channel > 1/2v o tree time.

Proof

The average number of steps pi get the channel is
s /Aik 4 (2x+l)

Q h Aik h

In the worst case of process i being the fastest and all neighbours

slowing down with the same worst case acceleration , SQ is the same for all

processes in the queue. The worst contention happens when all 2v subprocesses

are there. Hence, in the worst case, if T is a time interval and T iz the

subinterval of T in which pk has the channel, then

mean >2vS 2v-4

1/Ai
Note that this justifies thc use of the estimate i/ as the

probability to select subprocess pk from the queue. J i
In the following we assume_ 1 < i,k' <v and k ck + v. Thus pk' is the

kasker and p is the responder.
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Lemma 5.5 The probabi 1-4;ty of instantaneous overlap of subprocossse Pk and

p Piin their channels is > (v

Proof

By theorem 5.3 and!by the-fact that the random waits, done by the subprocesses

before each return to the queue, cause the relative p•'it• of the time intervals

during which channels are open to be"random, not affected by the oracle 4.

(Note that it is essential here that the waits are uniformly distributed in the

interval whose lengt!h is the mean number of local rounds attempt communication and

given by Theorem 5.3). .

Definition 5.6 Let success in oom~ufication be an ovcrlap of open channels for

at least one step of both processes i,k .

Definition 5.7 A phase of subprocess pk is a random wait, a handshake with
k
pi? a wait in queue and a communication attempt.

Theorem 5.2 The probability of success in communication in a phase of
i (~ 2

subprocess pk is > 2

Proof i
When the subprocess pk opens its channel, the number of steps done from

kiS•the time of the last estimation of A is at most 2Ai and hence, the new

speed ratio can be (?a+!) Aik in the worst case, (in which, process i is

the fastest and process k' slows down continuously with the maximum acceleration,

so that process i does more and more steps per step of k'). In this case, a
communication attempt of 4(2a+l)Ai time slots guarantees that p.k will do at

ik
least 2 steps during the time pk has its channel open. Because of the random

relative position of these steps with respect to pk'S steps %due to random waits),>1 2-3. _1

Prob (length of overlap is > I step given that there is an overlap)> -. 2.

Hence

Prob (there is an overlap and its length is > 1 step of both processes)

1()2
2 2v

by Lemma 5.3

Definition 5.8 Let y)2

Definition 5.9 Let qi (h/.9) be the probability that it takes exactly h
i k'

phases for poller subprocess pk to --ommunicate with Pi.

Lemma 5.10 For any oracle u, qi h _) (l-yn)h-1
_ mim

ik (. z:

ýC 7-



14 -

Proof

it sufficies to observe that the process of be answered by k' i
Pk

a geometric stochastic process with success probability hounded by (y 11l.

IBy using the above low&I~ amd known expressions for the mean and the tail of a

I geometric we get-

Lenuta 5. 7 mean (h) <2

Lemma 5.8 V C 0 < C <. I Pro <h C m ()

where 2.gC

note that, in the worst case relation of speeds of procofses i,k the total

length of a phase of subprocess Pk is the number of local rounds in the random

wait plus the number of Zocal rowvde up to the end of the communication attempt,

which is s(2v+l)(2cs+l) (by the algorithms and by Leumma 5.4 and Theorem 5.1.)
Hence we get

Theorem 5.3 For the worst case oracle .d * the mean number 14 of local rounds

to achieve communication is 64v
14< 6v 8 (2v+l)(2ci+l)

and the E-error response S(e) of the presented implementation of VS-_DCS is

S(C) < 8(2v+l (2ca+l) *h (C)max
or

14 = O v 3 .1) (
and S (E:) o~3'o *C1)

Proof

By previous remark and the fact that

Lh to (E/:2 16v Xog()

L9og I11 2

Coniclusion

Since we have assumed global parameters L0 and v to be constant, by

Theorem 5.3 our system has relative real time response. Our restrictions on

processors rates are much less than in our previous paper [Reif, Spirakis, 1981].

Furthermore, our programs seem much more modular and simple in design, although

we have utilized now adaptive techniques to deal with arbitrary speed variability.
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